Capillary Phenomena on a Liquid Surface

نویسندگان

  • Mohammad Ali
  • Akira Umemura
چکیده

Contraction of a liquid sheet of an incompressible Newtonian fluid in a passive ambient fluid is studied computationally to provide insights into the dynamics of capillary wave created during contraction. The problem composed of the Navier-Stokes system is associated with initial and boundary conditions that govern the time evolution of the capillary wave and the pressure and velocity fields within it. The correctness of the algorithm is verified with the data of experiment. It can be found that the prediction of the computation agrees well with the experiment. The algorithm is capable of capturing the capillary wave and therefore it is used to study the characteristic phenomena of that wave created on the surface of the liquid. Results show that the capillary wave is radiated from the tip of the liquid sheet caused by surface tension. The amplitude of the tip wave is much larger than any other waves and the asymptotic approach of the wave peaks can be observed during the propagation of waves. The tip wave contains the highest pressure and gradually the peak values of both high and low pressures decrease with the propagation of waves. Fluid velocity is motivated by both pressure due to surface tension and recirculation in peak and trough of the wave. During the contraction of the liquid sheet, the tip velocity is not uniform. Initially the length of the sheet increases a little and very soon the contraction occurs and continues. After long time, the gradient of tip velocity becomes very small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method

Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....

متن کامل

Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.

This Article describes the use of capillary pressure to initiate and control the rate of spontaneous liquid-liquid flow through microfluidic channels. In contrast to flow driven by external pressure, flow driven by capillary pressure is dominated by interfacial phenomena and is exquisitely sensitive to the chemical composition and geometry of the fluids and channels. A stepwise change in capill...

متن کامل

Characterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs

Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...

متن کامل

Relaxation and Breakup of a Cylindrical Liquid Column

Instability of capillary wave and breakup of a square cylindrical liquid column during its relaxation have been investigated numerically by simulating three-dimensional Navier-Stokes equations. For this investigation a computer code based on volume-of-fluid (VOF) method has been developed and validated with published experimental results. The result shows that the agreement of numerical simulat...

متن کامل

Determination of Surface Tension and Viscosity of Liquids by the Aid of the Capillary Rise Procedure Using Artificial Neural Network (ANN)

The present investigation entails a procedure by which the surface tension and viscosity of liquids could be redicted.To this end, capillary experiments were performed for porous media by utilizing fifteen different liquids and powders. The time of capillary rise to a certain known height of each liquid in a particular powder was recorded. Two artificial neural networks (ANNs) were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008